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Abstract The decomposition of high-density surface electromyography (HD-sEMG) signals into
motor unit discharge patterns has become a powerful tool for investigating the neural control of
movement, providing insights into motor neuron recruitment and discharge behaviour. However,
current algorithms, while effective under certain conditions, face significant challenges in complex
scenarios, as their accuracy and motor unit yield are highly dependent on anatomical differences
among individuals. To address this issue, we recently introduced Swarm-ContrastiveDecomposition
(SCD), which dynamically adjusts the contrast function based on the distribution of the data.
Here, we demonstrate the ability of SCD in identifying low-amplitude motor unit action potentials
and effectively handling complex decomposition scenarios. We validated SCD using simulated and
experimental HD-sEMG recordings and compared it with current state-of-the-art decomposition
methods under varying conditions, including different excitation levels, noise intensities, force
profiles, sexes and muscle groups. The proposed method consistently outperformed existing
techniques in both the quantity of decoded motor units and the precision of their firing time
identification. Across different simulated excitation levels, SCD detected, on average, 25.9 ±5.8
motor units vs. 13.9 ± 2.7 found by a state-of-the-art baseline approach. Across noise levels, SCD
detected 19.8 ± 13.5 motor units, compared to 11.9 ± 6.9 by the baseline method. In simulated
conditions of high synchronisation levels, SCD detected approximately three times as many motor
units compared to previous methods (31.2 ± 4.3 for SCD, 10.5 ± 1.7 for baseline), while also
significantly improving accuracy. These advancements represent a step forward in non-invasive
EMG technology for studying motor unit activity in complex scenarios.

(Received 22 October 2024; accepted after revision 26 February 2025; first published online 17 March 2025)
Corresponding author D. Farina: Department of Bioengineering, Imperial College, London, UK. Email:
d.farina@imperial.ac.uk

Key points
� High-density surface electromyography (HD-sEMG) decomposition provides information on
how the nervous system controls muscles, but current methods struggle in complex conditions.

� Swarm-ContrastiveDecomposition (SCD) is a new approach that dynamically adjusts how signals
are separated, improving accuracy and increasing the sample of detected motor units.

� SCD successfully identifies more motor units, including those with low-amplitude signals, and
performs well even in challenging conditions such as high-interference signals.

� In simulated ballistic contractions, SCD detected three times more motor units than previous
methods while improving accuracy.

� These advancements could improve non-invasive studies ofmuscle function inmovement, fatigue
and neurological disorders.

0 Agnese Grison obtained her MEng degree in Biomedical Engineering from Imperial College London. She is currently enrolled
as a PhD candidate at the UKRI Centre for Doctoral Training in AI for Healthcare at Imperial College London. Her PhD research
focuses on EMG decomposition and neural interfaces.
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Introduction

The nervous system regulates muscle force by trans-
mitting signals from alpha motor neurons in the spinal
cord to muscle fibres. The collective activity of these
motor neurons, known as the neural drive to the
muscle, determines the overallmuscle activation and force
production (de Luca & Erim, 1994; Farina & Negro,
2015). Each motor neuron’s discharge triggers an action
potential in each muscle fibre it innervates (Kandel
et al., 2000). The sum of the action potentials of the
fibres innervated by a single motor neuron is the motor
unit action potential (MUAP). The sum of the MUAP
trains from all active motor units generates the electro-
myography (EMG) signal, which represents the electrical
activity of the muscle during a contraction (de Luca,
1979). Therefore, the EMG signal comprises both a neural
component – the motor neuron discharge times – and
a peripheral/muscle component – the MUAP waveforms
(Stashuk, 2001). EMG decomposition aims to separate
these two components, enabling the precise identification
of the discharge times of each motor neuron.

For nearly a century, the primary method for
investigating motor units has been through invasive EMG
techniques, involving the decomposition of recordings
from needle or wire electrodes under highly controlled
conditions (Adrian & Bronk, 1929; Farina & Gandevia,
2024). These recordings have a high degree of selectivity,
typically allowing the decoding of only a few motor units
at a time. While high selectivity has been the primary
condition to allow for the identification of individual
motor unit activity from multi-unit recordings, this
property also limits the number of detectable motor units.
As a result, much of our current understanding of human
motor neuron function is derived from a narrow set of
motor units per subject. While these studies have been
critical in establishing foundational principles, they do
not provide a broad view across larger motor unit samples
or more varied conditions. Surface EMG (sEMG) is less
selective than invasive EMG and therefore traditionally
lacked the precision required to isolate individual motor
units.

The challenge of decomposing poorly selective sEMG
recordings has been partially addressed by increasing the
number of recording sites (electrodes) and applying blind
source separation (BSS) techniques. Increasing electrode
counts led to high-density sEMG (HD-sEMG) (Merletti &
Muceli, 2019) which providedmultiple observation points
for the motor unit activities. Most BSS methods use the
principles of independent component analysis (ICA) to
separate sources (i.e. the motor units) from the observed
mixtures. This is achieved through the use of a contrast
function, a non-linear measure of sparsity of the signals,
that is applied to the estimated spike trains in an iterative
fashion (Farina & Holobar, 2016).

Because theHD-sEMGsignals are convolutivemixtures
of the motor neuron spike trains, decomposition of these
signals requires convolutive BSS (cBSS). In cBSS, spike
trains are extracted by optimising a contrast function that
maximises an approximation of the skewness or kurtosis
of the sources.
While BSS ofHD-sEMGhas greatly improved the study

of motor units using non-invasive recordings, several
challenges remain in its practical application. One major
issue is that the number of successfully decomposedmotor
units can vary greatly across conditions, muscles and
individuals (del Vecchio et al., 2020). This variability
stems from the differences across conditions in the
distribution of MUAPs at the skin surface, which is an
inherent limitation of surface recordings. Indeed, in some
scenarios, HD-sEMG decomposition may not be feasible
at all due to these challenges. As a result, non-invasive
motor unit investigations often focus on a narrow set
of muscles, specific experimental subjects and controlled
recording conditions (de Oliveira et al., 2022).
The underlying reason for poor HD-sEMG

decomposition is that, in certain cases, the MUAPs
from different motor units exhibit highly similar wave-
forms in both space and time, making it difficult for
conventional contrast functions used in BSS to isolate
them. This similarity limits the effectiveness of traditional
decomposition algorithms. A promising direction
for overcoming this limitation is the development of
methods that enhance the differences between MUAPs by
implementing novel strategies for blindly determining the
optimal contrast function during decomposition. These
approaches could improve the differentiation of similar
MUAPs, leading to an increased number of decomposed
motor units, improved classification accuracy and broader
applicability of sEMG decomposition in more challenging
scenarios.
In a recent study (Grison et al., 2024) we introduced

Swarm-Contrastive Decomposition (SCD) for
decomposing multi-channel intramuscular EMG
recordings. The method optimises the contrast function
dynamically for each source, increasing the separation
between sources. Here, we use the concepts of SCD and
we adapt it to the decoding of surface recordings.
By dynamically adapting the contrast function, we

ensure that it is specifically tailored to the unique
characteristics of the source being decomposed,
significantly enhancing source separation performance.
The adaptability of the contrast function distinguishes
SCD from other state-of-the-art methods, which typically
fix the contrast function to polynomial approximations
of the kurtosis or the skewness (Holobar & Zazula, 2003;
Negro et al., 2016). Moreover, SCD implements a peel-off
strategy for sequential source removal, which allows the
algorithm to detect smaller or more subtle sources that

© 2025 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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2284 A. Grison and others J Physiol 603.8

would have otherwise been overshadowed by the larger,
more dominant ones.
The proposed method was extensively validated with

both simulated signals and experimental recordings
across multiple conditions, including varying excitation
levels, noise intensities, MUAP overlap, muscle groups
and sexes. In all analyses, SCD was compared against
current cBSS approaches, and specifically the method
proposed by Negro et al. (2016), which is a current
representative state-of-the-art decomposition approach.
Henceforth, in the following we will refer to cBSS as to
this particular method, representing one of the several
solutions proposed to address the general convolutive
demixing problem. The results demonstrated a substantial
increase in performance of SCD in all conditions tested,
proving the effectiveness of the approach in increasing
both the number and the accuracy of the decomposed
motor units. These findings indicated that, while the
new method does not fully eliminate all challenges,
SCD marks a significant advancement in HD-sEMG
decomposition. By increasing the yield and accuracy of
decomposition, it broadens the recording conditions and
experimental scenarios where reliable motor unit activity
can be extracted, ultimately increasing the practical utility
and robustness of sEMG for a wide variety of applications.

Methods

EMG generation model

The EMG signal can be modelled using a linear
time-invariant multiple-input–multiple-output system,
which can be compactly expressed in matrix form as:

x (t ) =
L−1∑

l=0

H (l) s (t − l) + ξ (t )

where x(t ) = [x1(t ), x2(t ), . . . , xM(t )]T is the vector ofM
EMG channels, s(t ) = [s1(t ), s2(t ), . . . , sN (t )]T represent
the N motor unit spike trains and ξ(t ) accounts for
the additive noise. The matrix H(l) has size M × N
and contains the lth sample of the L-sample-long MUAP
waveforms that appear for each of the N motor units
across M channels, assuming constant shape under
stationary conditions. As this method assumes the
repeatability of motor unit action potential shapes, it is
not applicable in scenarios where the waveform shapes
exhibit non-stationary variations, such as due to sliding of
the electrodes, fatigue, movement of the joints or clinical
conditions.
The convolutional model can be transformed into

an instantaneous mixture by augmenting the vector of
sources to include the N original sources and their
respective delayed versions. L represents the duration
of the impulse response of the filter, which models the

volume conductor. To ensure a favourable ratio between
the number of observations, that is the signals recorded
at each electrode location, and sources, the observations
are also extended byR delayed versions. This reformulated
instantaneous model is expressed as:

x̃ (t ) = H̃s̃ (t ) + ξ̃ (t )

where s̃(t ) is the N(L + R) × 1 matrix constructed as:

s̃ (t ) = [
s̃1 (t ) , s̃2 (t ) , . . . , s̃ j (t ) , . . . , s̃N (t )

]T

s̃ j (t ) = [
s j (t ) , s j (t − 1) , . . . , s j (t − (L + R − 1))

]

j = 1, . . . ,N

and H̃ , of sizeM(R + 1) × N(L + R), is constructed from
the extended convolution kernels h̃. The M(R + 1) × 1
observed signals x̃(t ) are:

x̃ (t ) = [x̃1 (t ) , x̃2 (t ) , . . . , x̃i (t ) , . . . , x̃M (t )]T

x̃i (t ) = [xi (t ) , xi (t − 1) , . . . , xi (t − R)] i = 1, . . . ,M

In the absence of noise, the retrieval of discharge
timings s̃(t ) can be framed as the following inverse
problem:

s̃ (t ) = Bx̃ (t )

where B represents the approximate pseudo-inverse of H̃ .
The goal of the decomposition process is to determine the
N separation vectors forming the matrix B.

Decomposition

We propose the use of the SCD decomposition algorithm
(Grison et al., 2024) and compare it with a representative
state of the art approach for cBSS decomposition (Negro
et al., 2016).
Both algorithms rely on ICA to separate sources by

maximising a statistical measure of non-Gaussianity or
sparsity of the estimated sources (Hyvärinen & Oja,
2000). In BSS of EMG signals, the main characteristic
used for decomposition is sparseness (Farina & Holobar,
2016) since motor unit discharge times are not fully
independent. The non-linear function used to assess
sparseness is called the contrast function, G. Similar
to the Gaussianity property, mixing sources results in
a signal less sparse than the individual sources. Thus,
sparse sources can be identified by finding projections
that maximise sparseness, making the choice of contrast
function critical for the stability of the numerical
optimisation process. Cumulants are a widely used class
of non-linearities for this purpose. By optimising the
separation vector to maximise higher-order cumulants,
such as skewness or kurtosis, non-Gaussianity as well as

© 2025 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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J Physiol 603.8 Unlocking high-density surface EMG 2285

sparseness are amplified, increasing the likelihood of iso-
lating sparse sources.

In the cBSS methods used for comparison (Negro et al.,
2016) the contrast function is defined to maximise an
approximation of the third cumulant (i.e. the skewness)
of the sources, utilising GcBSS(s) = 1

6 s
3. In contrast, our

approach proposes to maximise an adaptively tuned
higher-order cumulant for each source. Specifically,
GSCD(s) = E{sign(s)|s|e}, where e represents the exponent
of the polynomial function, and E is the expectation
operator. The core hypothesis is that each source requires a
different level of selectivity to be effectively separated from
the mixture. Sources that are more similar to one another
may require stronger discriminants, whereas others may
require less stringent criteria. This adaptivity is the main
difference between cBSS and the algorithm SCD.

In SCD, a candidate separation vector was randomly
initialised from a zero-mean normal distribution with
a standard deviation of 1. The candidate vector was
then repeated for the number of initialised particles
to produce the initial separation vectors b. On each
step, an ICA run was conducted on each separation
vector independently for a maximum of 1000 iterations,
with an early termination criterion applied if, after
20 iterations, GSCD(s) ceased to increase. After each
ICA step, a peak-finding algorithm detected the source
samples as calculated with the updated separation vectors,
followed by a two-class k-medoid clustering applied to
the estimated sources to identify their peaks as potential
motor unit spikes. Source quality was evaluated using a
fitness function based on the coefficient of variation of the
interspike intervals, where the candidate with the lowest
coefficient of variation was selected as the best source.
The coefficient of variation was chosen as an appropriate
metric due to the regularity of motor unit firing in iso-
metric contractions. When regularity of the firings could
not be assumed, as in the ballistic contractions, the
silhouettemeasure (Negro et al., 2016) was used instead to
assess source quality. After each ICA update, the optimal
exponent for the contrast function was chosen from
the current pool of candidates and updated by moving
toward the exponent that yielded the highest-quality
source. The separation vectors were then reinitialised with
the spike-triggered average of the highest-quality source.
Optimisation was halted after 10 updates of the optimal
exponent coefficient. To assess the final source quality,
the silhouette measure was used to evaluate the clustering
separation between the decomposed source and the back-
ground noise.

If the source passed this evaluation (silhouette > 0.85)
and had not been identified in previous iterations,
the motor unit action potentials were subtracted (i.e.
peeled off) from the signal by creating a template
motor unit waveform and removing it at each identified
motor unit firing time. This subtraction prevented

further convergence to the same source in subsequent
decomposition iterations.
However, from the estimated discharge times, motor

units exhibiting discharge properties outside the pre-
defined thresholds – specifically, a coefficient of variation
above 35% or a firing rate outside the range 2–35 Hz
(Martinez-Valdes et al., 2017) – were excluded from
further analysis.
To assess the importance of the two core features of

SCD – the adaptive contrast function and the peel-off
procedure – two targeted ablations were conducted. The
first ablation focused on addressing repeated convergence
to the same source. Three strategies were tested: (1)
initialising the separation vectors bwith the activity index,
a proxy for global pulse train activity (Holobar & Zazula,
2007) and eliminating the peel-off process, while pre-
venting previously accepted motor unit firing timings
from being reinitialised by excluding them from the
activity index; (2) combining the activity index with a
source deflationmethod to enforce orthogonality between
separation vectors; and (3) comparing with the proposed
SCD.
The second ablation maintained the peel-off method

across all configurations and examined the effect of
different exponents in the contrast function. These were
compared against the performance of SCD with the
dynamically adapted exponents.
The decompositions were run on an Intel(R) CoreTM

i7-10700K CPU with an Nvidia RTX 3080 GPU.

Simulations

HD-sEMG data were simulated using NeuroMotion (Ma,
Mendez Guerra et al., 2024) an advanced EMG simulator
designed to produce physiological electric potentials
during voluntary forearm movements. NeuroMotion
operates through three modules. The first, an upper-limb
musculoskeletalmodel developed using theOpenSimAPI
(Delp et al., 2007), defines and visualisesmovements while
estimating muscle fibre lengths and muscle activation
levels. These estimates are then input into BioMime
(Ma, Clarke et al., 2024) an AI-based volume conductor
model that generates MUAPs based on parameters such
as fibre number, depth, angular position, innervation
zone and conduction velocity, derived from a myo-
electric digital-twin model (Maksymenko et al., 2023).
The final module, a motor unit pool model, converts
neural inputs into spike train simulations, completing the
muscle activation simulation (Fuglevand et al., 1993).
An isometric and isotonic index finger contraction

from the flexor digitorum superficialis was simulated with
NeuroMotion. The simulated signals were generated for
an electrode band comprising a 10 × 32 electrode grid,
positioned around the proximal third of the forearm.

© 2025 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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2286 A. Grison and others J Physiol 603.8

Figure 1A displays a schematic of the simulated setup. A
pool of 100 motor neurons was simulated. The innervated
muscle fibres were randomly and uniformly distributed
throughout the muscle volume, with innervation zones
normally distributed around 50 ± 10% of the total
fibre length. An exponential function was employed
to model the recruitment thresholds and number of
innervated fibres for each motor neuron, resulting in a
higher proportion of small, low-threshold motor neurons
compared to larger, high-threshold ones.
Conduction velocities were sampled from a normal

distribution (mean 4.0 ± 0.5 ms−1, truncated between
3 and 4.5 ms−1 to avoid non-physiological parameters)
and sorted based on the number of innervated fibres.
Motor neurons began firing at a baseline rate of 8 pulses
per seconds (pps) once the excitation level surpassed
their recruitment threshold (Fuglevand et al., 1993). The
discharge rate increased linearly by 3 pps for every 10%
increase in excitation (Fuglevand et al., 1993; Keenan
et al., 2006). Maximum discharge rates varied from
35 pps for the first recruited motor neuron to 25 pps
for higher-threshold motor neurons (Fuglevand et al.,
1993). The final motor neuron was recruited at 50% of

themaximumexcitation level (Fuglevand et al., 1993). The
variability in discharge times followed a Gaussian random
process with a coefficient of variation of 0.2 (Fuglevand
et al., 1993; Keenan et al., 2006).
While the myoelectric digital-twin model

(Maksymenko et al., 2023) provided the muscle geometry
based on magnetic resonance imaging, NeuroMotion
estimated other motor unit parameters (position, length,
depth, angle, innervation zone and conduction velocity)
based on physiological ranges. These distributions were
randomised over 10 bootstrapping iterations to capture
the full variability observed in real data (N = 10).
Three distinct analyses were performed on different

types of simulated data to investigate the characteristics
of the proposed algorithm. The first analysis examined
the effect of excitation level on the decomposition
process by gradually increasing the excitation from 10 to
100% of maximal voluntary contraction (MVC) in 10%
increments, forming a dataset of 100 recordings, given
by 10 bootstrapping iterations for each of the 10 force
levels. For each MVC level, each contraction lasted 30 s.
Throughout this analysis, the signal to noise ratio was
maintained at 25 dB (zero-mean white Gaussian noise

Figure 1. Schematics of the HD-sEMG data used in the analysis
A, simulated HD-sEMG data from forearm muscles during index finger flexion, with the electrode grid positioned
over the proximal third of the forearm. The same setup was applied for the experimental recordings from the
forearm. Representative data (simulations) are shown for a 30 %MVC contraction. B, experimental HD-sEMG data
were also recorded from the TA muscle during ankle dorsiflexion. Representative data for a 20 %MVC contraction
are displayed. HD-sEMG, high-density surface electromyography; MVC, maximal voluntary contraction; TA, tibialis
anterior. [Colour figure can be viewed at wileyonlinelibrary.com]

© 2025 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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J Physiol 603.8 Unlocking high-density surface EMG 2287

with standard deviation based on the amplitude of the
originally simulated noiseless EMG signals across time
and channels) to isolate the effect of the excitation level.

The second analysis investigated the impact of the noise
level on motor unit decomposition. In these simulations,
the excitation level was fixed at 30 %MVC during 30 s
isometric and isotonic contractions, while the noise level
was varied from 10 to 30 dB, with 5 dB increments for 10
bootstrapping iterations (N = 10). This approach allowed
for examination of the performance of the algorithm
under different levels of signal contamination, simulating
more challenging real-world conditions.

The last analysis focused on ballistic contractions (high
synchronisation level), where the force increased rapidly
from 0 to 40 %MVC. Thirty bursts of isometric muscle
activity were simulated for 10 bootstrapping iterations
(N = 10), each lasting 1 s and separated by 3 s intervals.
These conditions mimicked sudden, explosive muscle
contractions, enabling evaluation of the performance of
the algorithm under high levels of synchronised motor
unit activity. The noise level in this experiment was
maintained at 25 dB. It is noteworthy that while the
contraction was dynamic in terms of force, the posture
and muscle geometry remained constant throughout the
simulation.

Experimental data

All reported experiments adhered to the ethical guidelines
set by Imperial College London (ICREC Project ID
19IC5640). All procedures were conducted in accordance
with the Declaration of Helsinki, with informed consent
obtained from the participants prior to each experiment.

Three experiments were conducted, with the first two
focusing on the tibialis anterior (TA) muscle of healthy
male and female participants respectively, and the last one
focusing on the forearm of healthy female participants.
In the TA experiments, participants were seated with
their right leg and foot secured to a dynamometer and
they were instructed to sustain an isometric and isotonic
ankle dorsiflexion. Figure 1B displays a schematic of the
experimental setup. Similar to the simulated conditions,
subjects in the forearm experiments were instructed to
perform isometric index finger flexion (Fig. 1A). The
force levels were set as percentages of the participants’
MVC, with visual feedback provided for both exerted
force and target. EMG signals were recorded in mono-
polar derivation, with a reference electrode placed on the
ankle (TA), and wrist (forearm), and bandpass-filtered
between 20 and 500 Hz for the signals collected at the
surface, and between 20 and 4400 Hz for the intra-
muscular signals. All signals and force data were recorded
concurrently using the Quattrocento multi-channel
amplifier (OT-Bioelettronica, Torino, Italy), featuring a

high common mode rejection ratio >95 dB, high-pass
filtered at 10 Hz, and digitised at 16-bit resolution.

Pilot 1: two-source validation (TA). Two healthy men,
aged 39 and 30 years, were recruited (N = 2). The
protocol included 20 s isometric and isotonic contra-
ctions at 10, 20 and 30 %MVC, a 15 s contraction at 40
%MVC, and 10 s contractions at 50, 60 and 70 %MVC.
Three 40-channel HD intramuscular EMG (HD-iEMG)
micro-electrode arrays (Muceli et al., 2015, 2022) were
implanted in the TA, oriented longitudinally and spaced
∼3 cm apart. The electrodes, made of platinum, are
arranged on two sides of a wider filament, with each
side consisting of 20 electrodes spaced 1 mm apart. The
two sides are offset by 0.5 mm (Muceli et al., 2022).
Two 64-channel HD-sEMG grids (4 mm inter-electrode
distance, 13 × 5 electrode configuration) were placed on
the skin surface above the intramuscular detection sites.
Intramuscular and surface EMGsignalswere concurrently
sampled at 10,240 Hz. The concurrent recording of intra-
muscular and surface EMG signals allowed for the use of
the two-source validation methods for an objective and
rigorous assessment of decomposition accuracy (Farina,
Merletti et al., 2014; Farina, Negro et al., 2014; Mambrito
& de Luca, 1984).

Pilot 2: sex differences in motor unit yield (TA).
Two healthy women, aged 23 and 24 years, were
recruited (N = 2). The protocol included 20 s iso-
metric and isotonic contractions at 5 and 10 %MVC.
One 256-channel HD-sEMG grid (4 mm inter-electrode
distance, 32 × 8 electrode configuration) was placed on
the TA. HD-sEMG signals were sampled at 2048 Hz.
The measurements on female individuals allowed us to
compare the algorithms in conditions that are challenging
for sEMG decomposition since it has been reported that
decomposition yield and accuracy decrease in female
individuals (del Vecchio et al., 2020; Lulic-Kuryllo &
Inglis, 2022; Taylor et al., 2022).

Pilot 3: motor unit yield in complex muscle groups
(forearm). Two healthy women, aged 26 and 30 years,
were recruited for this study (N = 2). The protocol
included 20 s isometric and isotonic index finger flexions
at 15 %MVC. Three 64-channel HD-sEMG grids (8 mm
inter-electrode distance, 13 × 5 electrode configuration)
were placed around the proximal third of the forearm
of each participant. HD-sEMG signals were sampled at
2048 Hz. The measurements on the forearm allowed us
to analyse the performance of the algorithms in more
complex muscle groups, where the number of motor
units decomposed is usually limited to fewer than 10 (del
Vecchio et al., 2020).

© 2025 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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2288 A. Grison and others J Physiol 603.8

Metrics for accuracy

The level of agreement between the discharge times of
motor units as decoded from the decomposition of the
simulated HD-sEMG and the ground truth was assessed
using the rate of agreement (RoA). The RoA measures
the fraction of commonly identified discharges relative to
the total number of discharges, considering both common
and not-common discharge times. The RoAwas therefore
calculated as follows:

RoA = TP
TP + FP1 + FP2

where TP refers to the number of matched predicted
activations within a deviation margin of ±0.5 ms
(Farina et al., 2001). FP1 and FP2 represent the counts
of unmatched predicted activations, corresponding to
discharge times present in only one of the two sets.
Several methods have been proposed to assess the

accuracy of decomposition of experimental HD-sEMG
data (Holobar et al., 2010, 2014; Hu et al., 2013) with the
two-source validation being the most reliable (Farina,
Merletti et al., 2014, Farina, Negro et al., 2014; Mambrito
& de Luca, 1984). This approach involves recording
both HD-sEMG and HD-iEMG signals concurrently,
decomposing them independently, and comparing
the discharge times from the two decompositions to
determine the RoA, as defined above. This approach
operates on the principle that similar results from two
independent algorithms applied to different signals are
probably correct, as the probability of identical errors is
low. The RoA thus reflects the relative performance of the
algorithms without bias toward either method (Farina,
Merletti et al., 2014, Farina, Negro et al., 2014). Here,
when available, we utilised the concurrent recording
of the HD-iEMG micro-electrode arrays to validate
the surface decomposition. The HD-iEMG data were
decomposed using SCD, as described in Grison et al.
(2024). When the concurrent recording of the HD-iEMG
signals was not available, the number of motor units
decoded by SCD and cBSS was compared, and the RoA
between the commonly identified motor units (by SCD
and cBSS) was also analysed.
For all analyses, the RoA is reported in percentages

as the mean and standard deviation. Additionally, the
number of motor units is reported as the mean and
standard deviation across bootstrapping iterations.

Statistical analysis

All statistical analyses were conducted in Python 3.10
using the SciPy library (Virtanen et al., 2020) and the
Pingouin statistical package. A significance threshold of
P < 0.05 was applied to all tests.

Two-way repeated-measures ANOVAs were performed
to assess the effects of independent factors (MVC
levels, noise levels, the exponent used in the contrast
function, and the method for preventing repeated source
convergence) on the dependent variable (i.e. the number
of decomposed motor units), including their interaction
effects. Post hoc pairwise comparisons with Bonferroni
corrections were conducted to identify specific differences
between factors.
To compare motor unit characteristics (MUAP

peak-to-peak amplitudes, conduction velocities, number
of fibres, depth and exponents of the contrast function),
independent t tests were performed when normality
was assumed (as determined by the Shapiro–Wilk test,
P < 0.05); otherwise, Mann–Whitney U tests were used.
For comparing the RoA of motor units decomposed

from HD-iEMG recordings and commonly identified by
both SCD and cBSS, Wilcoxon signed-rank tests were
applied due to non-normal distributions of the RoAs.

Results

Simulations: excitation level

Figure 2 summarises the results of motor unit
decomposition using SCD and cBSS across varying
excitation levels in the simulated data. Figure 2A illustrates
the mean number of decomposed motor units over 10
bootstrapping iterations. Across all excitation levels and
bootstrapping iterations, on average, cBSS identified
13.9 ± 2.7 motor units per contraction, while SCD
identified on average nearly a double number of motor
units (25.9 ± 5.8). Two-way repeated-measures ANOVA
revealed significant main effects of the decomposition
algorithm (P < 0.001) and MVC level (P < 0.001), as
well as a significant interaction between the algorithms
and MVC levels (P < 0.001). Post hoc analyses showed
that SCD resulted in a significantly higher number of
decomposed motor units than cBSS (P < 0.001). Of the
motor units identified by cBSS, 98% were also detected
by SCD, demonstrating that SCD primarily expanded
the total count of detected units, rather than identifying
significantly different units from those already captured
by cBSS. Figure 2B reports the final exponent distribution
of the automatically selected contrast functions for all
identified sources with SCD. The RoA of all the motor
units decomposed by SCD was 98.90 ± 2.33%, compared
to 98.02 ± 2.69% for cBSS. Figure 2B shows the RoA for
themotor units identified by bothmethods. In these units,
SCD showed a significant increase in RoA (P < 0.001).
The effect size, as measured by a rank-biserial correlation
of 0.99, indicates a substantial and practically meaningful
improvement in RoA.
A comparison between the motor units which were

detected by both SCD and cBSS (‘common’) and those

© 2025 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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J Physiol 603.8 Unlocking high-density surface EMG 2289

Figure 2. Effect of excitation level on the number of motor units found and characteristics of the
decomposed motor units
A, mean number of motor units per bootstrap iteration for SCD (blue) and cBSS (pink). Error bars indicate the
standard deviation across bootstrapping iterations. Individual data points from each bootstrapping iteration are
overlaid on the bar chart. SCD decomposed significantly more motor units than cBSS (P < 0.001). B, distribution
of exponents for SCD. C, distribution of the RoA between the automatic methods and the simulated ground

© 2025 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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2290 A. Grison and others J Physiol 603.8

truth for the motor units commonly identified by SCD and cBSS. D–G, distributions of the peak-to-peak MUAP
amplitudes (D), conduction velocity (E), number of fibres innervated (F) and depth (measured with respect to the
skin, higher is deeper) (G) for motor units common to both SCD and cBSS, and those uniquely identified by SCD.
cBSS, convolutive BSS; RoA, rate of agreement; SCD, Swarm-Contrastive Decomposition.
[Colour figure can be viewed at wileyonlinelibrary.com]

identified only by SCD (‘unique’) is presented across
various motor unit properties. These properties include
peak-to-peak amplitudes of theMUAP in the channelwith
the highest amplitude (Fig. 2D), motor unit conduction
velocities (Fig. 2E), the number of fibres innervated
per motor unit (Fig. 2F) and the depth of the motor
units (Fig. 2G). These results show that the motor units
uniquely identified by SCD tended to exhibit lower
peak-to-peak amplitudes, suggesting that these motor
units were either located farther from the electrodes
or deeper within the muscle. However, Fig. 2G shows
that, while significant, the difference in distance from
the electrodes between common and unique units was
relatively small. Moreover, the SCD-unique motor units
typically had slower conduction velocities and a smaller
number of innervated fibres, indicating they were smaller
motor units.
The computational time required to run one

decomposition was ∼2 min for cBSS and 12 min for
SCD.

Ablations

Figure 3A displays the mean number of decomposed
motor units across bootstrapping iterations, stratified by
force level, for the three methods employed to mitigate
repeated convergence to the same source during the
ICA optimisation. On average, across force levels and
bootstrapping iterations, the activity index method
identified 8.4 ± 2.6 motor units, the deflation method
11.3± 1.7 motor units and the peel-offmethod 25.9± 5.8
motor units. Two-way repeated-measures ANOVA
revealed significant main effects of the method used to
prevent repeated convergence to the same source on the
number of decomposedmotor units. The analysis revealed
significant main effects for bothMVC (P< 0.001) and the
method used (∗P < 0.001), as well as a significant inter-
action between the two independent factors (P < 0.001).
Post hoc pairwise comparisons revealed significant
differences between the three methods in their ability to
decompose motor units. The peel-offmethod consistently
outperformed both the activity and deflation methods
with highly significant differences (P < 0.001 for peel-off
vs. activity; P < 0.001 for peel-off vs. deflation). These
results demonstrate that the peel-off method identifies
significantly more motor units than the other methods.
Additionally, the deflation method also significantly
outperformed the activity method (P < 0.001). These
results indicate that both force level and method to

prevent convergence on the same source significantly
influence the number of decomposed motor units.
To further understand the interaction between

the ablation method and the way in which contrast
functions are selected, we compared the number of units
decomposed using the best ablation method in the pre-
vious test (peel-off) and four ways of defining the contrast
functions for the separation: fixed contrast functions
with exponents of orders 2, 2.4 and 3, and using SCD
to optimise the selection of the contrast function used
for each decomposed source (Fig. 3B). The fixed values
were selected to look at the median value of the adapted
swarm exponents (e = 2.4) and the closest integer lower
(e = 2) and upper (e = 3) bounds. On average, across all
force levels and bootstrapping iterations, the method with
e = 2 identified 10.9 ± 4.6 motor units, the method with
e= 2.4 identified 21.1± 3.5 motor units, the method with
e= 3 identified 6.4±3.4 motor units and the method with
the adaptive exponent identified 25.9 ± 5.8 motor units.
Two-way repeated-measures ANOVA revealed significant
main effects of bothMVC level (P< 0.001) and exponents
used in the contrast functions (P < 0.001) on the number
of decomposed motor units, as well as a significant inter-
action between the two factors (P < 0.001). Post hoc
pairwise comparisons revealed significant differences
between all four methods. The swarm method resulted in
a significantly higher number of decomposed motor units
compared to e = 2 (P < 0.001), e = 2.4 (P < 0.001) and
e = 3 (P < 0.001).
These results reflect an important improvement in

the decomposition when an adaptive method to select
contrast functions is combined with the peel-off method
for iterative source removal. Using either of these two
configurations alone with either fixed contrast functions
or other possible source removal methods resulted in
drastic reductions in the number of decomposed motor
units.

Simulations: noise level

Figure 4 presents themean number of decomposedmotor
units across bootstrap iterations at a fixed excitation
level of 30 %MVC (Fig. 4A) and the RoA of the
identified motor units compared to the simulated ground
truth (Fig. 4B). Two-way repeated-measures ANOVA
revealed significant main effects of both noise level
(P < 0.001) and decomposition algorithm (P < 0.001)
on the number of decomposed motor units, as well
as a significant interaction between the two factors

© 2025 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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J Physiol 603.8 Unlocking high-density surface EMG 2291

(P < 0.001). Post hoc pairwise comparisons revealed
significant differences between all noise levels, with higher
noise levels resulting in fewer decomposed motor units.
Additionally, the SCD algorithm identified significantly
more motor units than the cBSS algorithm across all
noise levels (P < 0.001). These results indicate that both
noise level and decomposition algorithm significantly
influence the number of decomposed motor units, with
SCD demonstrating superior performance. On average

across all noise levels and bootstrapping iterations, cBSS
identified 11.9 ± 6.9 motor units, while SCD detected
19.8 ± 13.5 motor units. Approximately 97% (11.5 ± 7.2)
of the motor units detected by cBSS were also detected by
SCD. The RoA for the motor units identified by SCD was
99.1 ± 1.8%, compared to 98.2% ± 2.6% for cBSS. The
RoA of themotor units commonly identified by both SCD
and cBSS (Fig. 4B) was significantly higher for SCD than
for cBSS (P < 0.001).

Figure 3. Effect of method to prevent repeated convergence to the same source and exponent of the
contrast function on the number of motor units found
A, effect of the method used to prevent source convergence on the number of motor units found. Bars represent
the mean of the bootstrapped samples, while error bars reflect the standard deviation across these bootstrapping
iterations. Individual data points from each bootstrapping iteration are overlaid on the bar chart. Three methods
are reported: (1) activity (use the activity index to initialise the separation vectors), (2) deflation (activity index to
initialise the separation vectors and orthogonalise the separation vectors) and (3) peel-off (remove found sources
from the EMG). The peel-off method decomposed significantly more motor units than the other two methods
(P < 0.001). B, effect of the exponent of the contrast function on the number of motor units found. The peel-off
approach was used for all the three methods reported: (1) exponent fixed at 2, (2) exponent fixed at 2.4, (3)
exponent fixed at 3, and (4) exponents starting at [2, 3, 4, 5, 6, 7] and updated with particle swarm optimisation.
The decomposition with the swarm update found significantly more motor units than fixing the exponent values
(P < 0.001). EMG, electromyography. [Colour figure can be viewed at wileyonlinelibrary.com]

© 2025 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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2292 A. Grison and others J Physiol 603.8

Simulations: ballistic contractions

The decomposition performance was preserved in contra-
ctions simulated with ballistic force changes, where the
overlap of the MUAPs over time was greater due to the
rapid recruitment and de-recruitment of the motor units.
Figure 5 provides a representative example of the signal

and the decomposed activity. Figure 5A presents the
spike-triggered average of the MUAP of a decomposed
unit. The estimated activity of the unit in one of the bursts
of EMG is shown in Fig. 5B, which illustrates a clear
separation between the source components (marked with
red circles) and the background activity. A representative
example of 10 channels of the simulated EMG for the same
1 s interval is depicted in Fig. 5C, reported for the specific
spatial grid configuration (10 × 32).
Figure 6 presents the results of this analysis. Figure 6A

shows the number of decomposed motor units for both
cBSS and SCD, with SCD identifying approximately
three times the number of motor units of cBSS. On
average across the bootstrapping iterations, cBSS detected
10.5 ± 1.7 motor units, while SCD decoded 31.2 ± 4.3,
which were statistically different (P < 0.001). On average,
96% of the motor units identified with cBSS were also
identified with SCD. The RoA of all the motor units
decomposed by SCD was 97.5 ± 3.6%, while cBSS
achieved 97.1 ± 2.4%. Of the commonly identified
motor units, SCD achieved a significantly higher RoA
(P < 0.001). The distribution of RoA for the commonly

detected motor units is illustrated in Fig. 6B. Additionally,
the motor units uniquely identified by SCD displayed
significantly lower (P < 0.001) peak-to-peak MUAP
amplitudes compared to those found by cBSS (Fig. 6C).
This further demonstrates SCD’s capability to decompose
lower-amplitude motor units that are missed by cBSS.

Pilot 1: two-source validation

This experiment aimed to compare the HD-sEMG
decomposition results between SCD and cBSS using
experimental data. The outputs from both methods were
validated by comparing them against the decomposition
of concurrently recorded HD-iEMG signals, providing
a reliable benchmark for assessing the accuracy of the
surface decompositions.
Across the force levels, SCD identified 41.6 ± 12.1

motor units for subject 1 and 12.0 ± 5.3 for subject 2,
a significant increase (P < 0.001) with respect to cBSS
(13.7 ± 3.1 and 2.1 ± 0.7 respectively). Additionally, the
number of matched motor units between HD-iEMG and
HD-sEMG was greater for SCD than for cBSS (Fig. 7A).
This was probably due to the fact that SCD could
identify deeper or smaller sources that were not separable
with cBSS but that were captured by the intramuscular
multi-electrode arrays.
To assess decomposition accuracy of the two compared

methods, the RoA for the motor units found by both cBSS

Figure 4. Effect of noise on the number of motor units found and the RoA with the ground truth for 30
%MVC force level
A, number of motor units against noise level, for SCD and cBSS. Bars represent the mean of the bootstrapped
samples, while error bars reflect the standard deviation across these bootstrapping iterations. Individual data points
from each bootstrapping iteration are overlaid on the bar chart. SCD decomposed significantly more motor units
than cBSS (P < 0.001). B, distribution of the RoA between decomposed motor units and their simulated ground
truth for the motor units commonly identified by SCD and cBSS. cBSS, convolutive BSS; MVC, maximal voluntary
contraction; RoA, rate of agreement; SCD, Swarm-Contrastive Decomposition. [Colour figure can be viewed at
wileyonlinelibrary.com]

© 2025 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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J Physiol 603.8 Unlocking high-density surface EMG 2293

and SCD, and matched with HD-iEMG, was calculated.
The RoA for SCD was 97.3 ± 3.6%, compared to
95.0 ± 4.4% for cBSS.

Figure 7B shows the distribution of the RoA for the
commonly identified motor units, which shows a shift
toward higher values for SCD (although there was only
a trend for this shift; P = 0.08). Additionally, when
comparing the motor units identified by both cBSS and
SCD, as well as those uniquely identified by SCD, it
was observed that SCD successfully detected motor units
with significantly lower peak-to-peak MUAP amplitudes
(P < 0.001), underscoring its ability to identify smaller
motor unit activity that may have been overlooked by
cBSS.

Additionally, the exponent for HD-sEMG was
significantly higher (P < 0.001) than that for HD-iEMG
(Fig. 7D).

Pilot 2: sex differences in motor unit yield (TA). In
this experiment, the performance of SCD and cBSS
were compared when decomposing signals recorded
from female subjects. Figure 8 shows the number of
decomposed motor units per subject stratified by force

level (Fig. 8A) and the RoA between the motor units
identified by the two methods (Fig. 8B). On average
across subjects and force levels, SCD identified 16.8 ± 3.8
motor units (20 and 14 at 5 %MVC, and 20 and
13 at 10 %MVC for each subject respectively), while
cBSS identified 10.0 ± 1.8 motor units (11 and 8 at 5
%MVC, and 12 and 8 at 10 %MVC for each subject
respectively). Importantly, SCD identified all the motor
units identified by cBSS, and additional ones. The RoA
between SCD and cBSS was 97.2± 2.4% for 5%MVC, and
95.9% ± 3.6% for 10 %MVC (Fig. 8B). The differences in
the peak-to-peak amplitudes of the MUAPs between the
units commonly found by both cBSS and SCD and those
uniquely identified by SCD were not significant (Fig. 8C).

Pilot 3: motor unit yield in complex muscle groups
(forearm). In this experiment, the performance of SCD
and cBSS were compared when decomposing signals
recorded from the forearm muscles of female subjects.
Figure 9 shows the number of decomposed motor units
(Fig. 9A) and the RoA between the motor units identified
by the two methods (Fig. 9B). For each subject, SCD
identified 17 and 22 motor units, while cBSS identified 10

Figure 5. Representative example of a unit in a ballistic contraction decomposed with 100% accuracy
A, spatial distribution of the MUAP arranged in the 10 × 32 electrode configuration. B, a 1 s zoom-in of the
innervation pulse train of the full source. The discharge times of the clustered source are shown in red. C, a 1 s
zoom-in of the EMG. EMG, electromyography; MUAP, motor unit action potential. [Colour figure can be viewed
at wileyonlinelibrary.com]

© 2025 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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2294 A. Grison and others J Physiol 603.8

and 17 motor units respectively. Only four units that were
identified by cBSS were not identified by SCD. Across the
units with high level of agreement, the RoA between SCD
and cBSS was 96.7 ± 2.6% (Fig. 9B). The differences in
the peak-to-peak amplitudes of the MUAPs between the
units commonly found by both cBSS and SCD and those
uniquely identified by SCD were not significant (Fig. 9C).

Discussion

We proposed and validated SCD for the decomposition
of HD-sEMG signals, demonstrating its superior
performance over state-of-the-art approaches. As
demonstrated with both simulations and experimental
results, SCD represents amajor step forward inHD-sEMG
decomposition, with broad implications for the study of
the neural control of movement. The core strength of SCD
lies in its dynamic adaptation of the contrast function
via particle swarm optimisation and the incorporation of
a peel-off strategy for sequential source removal. These
features enable SCD to address critical challenges in
HD-sEMG decomposition, such as differentiating motor
units with highly similar MUAPs and identifying motor
units with low-energy MUAPs. Unlike conventional BSS
algorithms that rely on fixed contrast functions (Holobar
& Zazula, 2003; Negro et al., 2016), the ability of SCD to

adjust its contrast function allows for a greater flexibility
and improved handling of diverse signal characteristics.
SCD was validated using both simulated and

experimental data. In simulations, SCD decomposed
a number of motor units nearly double those identified
by classic cBSS. The motor units identified by SCD had
smaller MUAPs (Figs 2D and 7C), and were therefore
either deeper in the muscle tissue or smaller (Fig. 2G).
Accordingly, the motor units identified by SCD had
slower conduction velocities and fewer innervated fibres
(Fig. 2E and F).
When further applied to simulated data during ballistic

tasks (Fig. 5C), SCD demonstrated a 3-fold increase
in the number of decomposed motor units (Fig. 6A),
while reaching higher accuracy than the state-of-the-art.
Furthermore, simulations also demonstrated that SCD
identified a greater number of motor units than cBSS
at varying levels of noise, despite the difference between
methods decreasing with an increase in noise (Fig. 4A).
The simulations also revealed that both the adaptive

contrast function and the peel-off procedure significantly
contributed to SCD’s performance (Fig. 3). Interestingly,
we showed that fixing the exponent to the median
value of the adaptively determined exponents during the
swarm update yielded significantly fewer decomposed
motor units compared to allowing the exponent to adapt

Figure 6. Effect of ballistic task on the number of motor units found and the RoA with the ground truth
A, number of motor units found for SCD and cBSS. Bars represent the mean of the bootstrapped samples, while
error bars reflect the standard deviation across these bootstrapping iterations. Individual data points from each
bootstrapping iteration are overlaid on the bar chart. SCD decomposed significantly more motor units than cBSS
(P < 0.001). B, distribution of the RoA between decomposed motor units and their simulated ground truth for
the motor units commonly detected by SCD and cBSS. C, distributions of the peak-to-peak MUAP amplitudes for
motor units common to both SCD and cBSS, and those uniquely identified by SCD. cBSS, convolutive BSS; MUAP,
motor unit action potential; RoA, rate of agreement; SCD, Swarm-Contrastive Decomposition. [Colour figure can
be viewed at wileyonlinelibrary.com]

© 2025 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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(Fig. 3B). This is because sources requiring higher or lower
exponents would not be detected with a fixed e= 2.4, pre-
venting the algorithm from removing their contributions
and converging to alternative sources. Moreover, the
median exponent varied depending on the dataset,
making it impractical to predefine an exponent value in

advance; this determination would only be feasible post
hoc, following decomposition using the swarm update.
By incrementally removing the contributions of higher
amplitude MUAPs, SCD was able to converge to smaller,
less prominent MUAPs that would otherwise remain
undetected. Importantly, the peel-off approach did not

Figure 7. Effect of the decomposition algorithm used on experimental data
A, number of motor units found against the force level for SCD and cBSS. The number of matched motor units
between the intramuscular and the surface recordings is reported in a lighter shade (light pink for cBSS and light
blue for SCD). The results from the two subjects are pooled together. B, distribution of the RoA for the motor
units that matched with the intramuscular recordings and common between cBSS and SCD. C, distribution of the
MUAP peak-to-peak amplitudes for the motor units commonly identified by cBSS and SCD, and those uniquely
found by SCD. D, distribution of the exponents for the intramuscular and the surface recordings. cBSS, convolutive
BSS; MUAP, motor unit action potential; RoA, rate of agreement; SCD, Swarm-Contrastive Decomposition. [Colour
figure can be viewed at wileyonlinelibrary.com]

© 2025 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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compromise performance; in all analyses, the RoA for
SCD consistently surpassed that of cBSS, which employs
a deflation method.
Overall, the simulations indicated high performance

of the proposed method in terms of motor unit yield
and accuracy in decomposition. We further validated
SCD experimentally using a two-source approach by
comparing HD-iEMG andHD-sEMG recordings (Farina,
Merletti et al., 2014, Farina, Negro et al., 2014; Mambrito
& de Luca, 1984). Matching the decomposition results
between these two modalities was crucial for validating
the proposed algorithm. SCD decomposed significantly
more motor units than cBSS from experimental signals,
with a higher number of matched motor units extracted
from the HD-iEMG recordings (41.6 ± 12.1 and
12.0 ± 5.3 vs. 13.7 ± 3.1 and 2.1 ± 0.7, P < 0.001).
Interestingly, we observed that the distribution of

exponents required in the contrast function had a greater
mean value for HD-sEMG signals than for HD-iEMG
signals (Fig. 7D). This suggests the need for a higher
exponent when dealing with sources that are smaller or
more similar to one another, a characteristic often seen
with non-invasive signals.
Overall, the new approach significantly increased the

number of detected motor units across all conditions
without compromising accuracy, which actually

improved. The yield varied widely depending on the
conditions, with increases ranging from ∼50% to over
300%, but yet an increase was achieved consistently
in all cases, across a broad range of scenarios. This
consistent increase implies we can now achieve
better results in conditions that previously yielded
borderline unit detections. Future work could explore
how adjusting certain hyperparameters used in SCD
might further enhance decomposition performance. For
instance, lowering the silhouette threshold or adapting it
dynamically during decomposition could potentially yield
better results and recover sources that might otherwise be
refined during manual editing.
Also, future work could investigate whether all six

swarm particles are essential for effectively capturing
non-linearities or if computational time can be reduced by
using fewer exponents. Nevertheless, since SCD performs
six optimizations in parallel and identifiesmore than twice
as many motor units as cBSS, we believe the additional
computational time is justified and does not pose a
significant barrier to practical application.
The method is particularly useful in conditions where

the number of successfully decoded units is typically
small. For instance, in cases where the MUAPs are
highly similar – such as when recording from deep
muscles or from muscles covered by a large layer

Figure 8. Effect of the decomposition algorithm used on experimental data
A, mean number of motor units found against the force level for SCD and cBSS across the two participants. Black
circles represent the value for each subject. Dashed lines connect the subjects across force levels. B, distribution of
the RoA for the motor units that matched between cBSS and SCD. C, distribution of the MUAP peak-to-peak
amplitudes for the motor units commonly identified by cBSS and SCD, and those uniquely found by SCD.
cBSS, convolutive BSS; MUAP, motor unit action potential; RoA, rate of agreement; SCD, Swarm-Contrastive
Decomposition. [Colour figure can be viewed at wileyonlinelibrary.com]

© 2025 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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of subcutaneous fat –discriminating between units
becomes a major challenge. In these scenarios, standard
decomposition techniques may fail to distinguish
MUAPs, often leading to failure in the decomposition. By
dynamically optimising the separation of sources, SCD
is a step forward to mitigate this problem, maximising
the contrast between similar MUAPs and ensuring
a higher yield of distinct motor units even in such
complex scenarios. An example of such conditions is
the decoding of motor units from female individuals.
The proposed method demonstrated superior motor
unit yield, as highlighted earlier. This suggests that the
technique is particularly effective in addressing physio-
logical differences, enhancing the overall accuracy and
applicability of motor unit detection across diverse
populations. However, due to the limited number of
experimental data presented, these findings should
be validated through further analysis and additional
research.

We presented representative results from female
individuals for both the TA muscle, typically known
for successful decomposition, and the forearm muscles,
where decomposition tends to be less effective. The
proposed method consistently improved the yield
of decomposed motor units with respect to the
state-of-the-art cBSS in these subjects for both muscle

groups. However, the limited number of participants and
experimental conditions precluded a statistical analysis,
highlighting the need for additional data to evaluate the
significance of these findings.
In most conditions, in female individuals, we could

enhance the number of decomposed units by around 50%.
While this does notmatch the numbers observed inmales,
it represents a substantial improvement in many cases. In
some instances, adding five to six reliably extracted motor
units, as shown in this study, can have a significant impact
on the physiological interpretations.
Increasing the number of concurrently decoded motor

units is critical for advancing our understanding of
the neural control of movement. For example, a larger
pool of concurrently sampled motor units provides
more comprehensive information on the distribution of
common synaptic inputs to motor neuron populations
(Farina, Merletti et al., 2014, Farina, Negro et al., 2014).
This is particularly valuable for characterising how motor
neurons are grouped to generate force and for predicting
the net muscle force generated by the population of active
units (Caillet et al., 2023). Indeed, the association between
estimated neural drive to muscle and muscle force output
becomes stronger and more reliable as more motor units
are included in the cumulative analysis.

Figure 9. Effect of the decomposition algorithm used on experimental data recorded at the forearm of
two female participants
A, mean number of motor units found for SCD and cBSS across the two participants. Black circles represent the
value for each subject. Dashed lines connect the subjects across force levels. B, distribution of the RoA for the motor
units that matched between cBSS and SCD. C, distribution of the MUAP peak-to-peak amplitudes for the motor
units commonly identified by cBSS and SCD, and those uniquely found by SCD. cBSS, convolutive BSS; MUAP,
motor unit action potential; RoA, rate of agreement; SCD, Swarm-Contrastive Decomposition. [Colour figure can
be viewed at wileyonlinelibrary.com]

© 2025 The Author(s). The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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The expansion in motor unit sample size not only
enhances the precision of neuromuscular research
but also opens up new possibilities for clinical and
assistive applications, such as refined neural control
strategies in prosthetics and advanced neural interfaces
for rehabilitation (Barsakcioglu et al., 2020; Farina et al.,
2017; Gogeascoechea et al., 2020; Tanzarella et al., 2023).
In these applications, adapting SCD for real-time, online
decomposition is a key future direction.
However, SCD has been validated exclusively in

scenarios where the muscle geometry remains static.
Its current framework does not account for dynamic
changes in muscle fibre length or significant shifts
in firing patterns. Consequently, SCD’s performance is
likely to degrade in more complex conditions, such as
during dynamic muscle contractions where fibre lengths
or recruitment strategies change over time, causing
non-stationary changes in the shapes of the MUAPs. This
limitation highlights the need for further development to
adapt the algorithm for non-stationary conditions, where
changes in muscle architecture and firing behaviour could
substantially impact decomposition accuracy.

Conclusions

We have demonstrated the potential of SCD as a
promising benchmark for HD-sEMG decomposition, as
supported by strong simulation results and experimental
case studies under different challenging conditions. By
dynamically adapting its contrast function and adopting
a unique peel-off strategy, SCD consistently outperforms
traditional methods, particularly in detecting small and
deep motor units. These findings, validated through
simulations and experimental data, pave theway for SCD’s
use as a new tool for the study of the neural control of
movement as well as for applications ranging from clinical
diagnostics to advanced human–machine interfaces. Its
ability to resolve finer differences between MUAPs marks
a significant leap forward in capturing the full complexity
of neuromuscular activity.
The code used in this study is available at https://github.

com/AgneGris/swarm-contrastive-decomposition.
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